Sam Discusses Lunacy Page 1

SAM DISCUSSES LUNACY

Table of contents

Tables 2

Metatables (Classes) 6

Numbers 11
Binary numbers 14
Comments 18
Desktop calculator 19
Loops (While and repeat) 20
For loops with functions 23
List iteration 26
Multiple inheritance 27
Strings 30

All content in this book, including code samples, has been donated to the public domain by Sam
Trenholme.

Sam Discusses Lunacy Page 2

TABLES

Let’s look at Lua. First of all, tables:

foo = {}
foo["bar"] = "Hello, "
foo["baz"] = "world!"

foo["bozzle"] = function() print("Hello, world!") end

Then, we can do stuff like this:

print(foo["bar"])
print(foo["baz"])
print(foo["bozzle"])

Since foo["bozzle"] is a function (table members can be numbers, strings, functions, tables,
booleans, among other data types, but not nil), we can call it directly:

foo["bozzle"]()
or even
print(foo["bozzle"1())

We can define the above table like this in Lua:

foo = {

bar = "Hello, ",

baz = "world!",

bozzle = function() print("Hello, world!") end
}

Tables, as noted above, can have members which are themselves tables:

foo = {}
foo["bar"]

{ oink = "Hello, world!",

mister = function() print("Hello, world!") return 1 end
}
foo["baz"] = "Cool!"

print(foo["bar"]1["oink"])
print(foo["bar"]["mister"]())

The brackets and quotes can get unwieldy, so this also works:

print(foo.bar.oink)
print(foo.bar.mister())

We can combine brackets and dot notation:

Sam Discusses Lunacy Page 3
print(foo["bar"].oink)
Which is userful when using a variable to determine the table index:

bozzle = "bar"
print(foo[bozzle].oink)

We can even have a sub-table refer to the parent table:
foo.bar.loop = foo
And then:

print(foo.bar.loop.bar.oink)
print(foo.bar.loop.bar.loop.bar.oink)
print(foo.bar.loop.bar.loop.bar.loop.bar.oink)

To see the members of a table, we have to iterate through them:
for k,v in pairs(foo) do print(k,v) end

Which gives us output like this:

bar table: 00F49F08
baz Cool!

We can use recursion to look at subtables, but be careful of loops!

function tableview(t, name, depth)
-- If we call a function with too few arguments, the extra parameters
-- have the value nil

if name == nil then
name = ""

end

if depth == nil then
depth = 0

end

-- Infinite loop protection
if depth > 10 then

return 0
end

-- View this table and recurse with subtables
for k,v in pairs(t) do

if type(v) ~= "table" then -- ~= is != in most other languages
print(name,k,v)
else
tableview(v, name .. " " .. k, depth + 1)
end
end

end

Sam Discusses Lunacy Page 4

Note that Lua uses “--” to start a comment, unlike the “#” most UNIX scripting languages
use.

We can now invoke it:
tableView(foo)

Note the function takes three arguments; since we call the function with only one argument,
the other two values are set by Lua to be nil.

While the above works, the issue is that when we have an element whichvloops back to the
top of the table, we will show that element multiple times. There is a way to solve that

problem, but it’s a little tricky to understand.

The trick is this: Table keys can also be tables (well, pointers to tables; Lua internally stores
the memory address of the table as the key and a note the pointer is to a table).

Let’s check this out:
foo[foo] = "Table pointer key example"

Here, the key is a pointer to a table. This can be useful, because we can use that to know
right away if we’re going in to a loop (see the next page):

Sam Discusses Lunacy Page 5

function tableView(t, name, seen)
-- If we call a function with too few arguments, the extra parameters
-- have the value nil

if name == nil then
name = ""

end

if seen == nil then
seen = {t = true}

end

seen[t] = true

-- View this table and recurse with subtables
for k,v in pairs(t) do

if type(v) ~= "table" then -- ~= is != in most other languages
print(name,k,v)
else

if seen[v] then
print(name, k, "LOOP!")

else
tableview(v, name .. " " .. k, seen)

end

end
end
end

Sam Discusses Lunacy Page 6

METATABLES

Let’s make two tables in Lua:

foo = { bar = "Hello", baz = "World" }
someTable = { life = "is", good = "yes" }
print(someTable.bar)

This returns “nil”. When we look for someTable.bar (i.e. someTable["bar"]), we will get nil
because the element “bar” is not in someTable, even though it’s in the table foo.

Now, let’s have it so that, if an element is not in someTable, we look in the table foo for that
element:

someTableMeta = {__index = foo}
setmetatable(someTable, someTableMeta)
print(someTable.bar)

Now, looking up someTable.bar returns the value “Hello”:

1. We look in someTable for the element “bar”

2. Since it’s not found, we see if we have an index metatable. We do, so we look in the index
metatable, in this case the table foo, for the element.

3. Since foo has the element foo.bar, we use the element in the index metatable for
someTable to have it so asking for someTable.bar gives us “Hello”.

If we don’t want a separate metatable, a table can be its own metatable:

foo = { bar = "Hello", baz = "World" }

someTable = { life = "is", good = "yes", __index = foo }
setmetatable(someTable, someTable)

print(someTable.bar)

someTable.bar is now “Hello”, since foo.bar is “Hello” and someTable’s index metatable is
the foo table.

Likewise, the index metatable can also be the metatable:

foo = { bar = "Hello", baz = "World" }
foo.__index = foo

someTable = { life = "is", good = "yes" }
setmetatable(someTable, foo)
print(someTable.bar)

Again, this returns “Hello”.

Note that the “__index” element needs to be set after the table is initially declared.

Sam Discusses Lunacy Page 7

Index metatables can also be functions:

someTable = { life = "is", good = "yes",

__index = function() return 404 end }
setmetatable(someTable, someTable)
print(someTable.bar)

This returns the number 404. Here, any element which is not in the table will return, instead
of nil, the number 404.

We can use a function to have the same behavior we have when an index metatable is a
table:

foo = { bar = "Hello", baz = "World" }
someTable = { life = "is", good = "yes",
__index = function(self, i) return foo[i] end }
setmetatable(someTable, someTable)
print(someTable.bar)

This will return “Hello”. The second argument to an index metatable function is the element
we tried to access in the table.

The first argument, self, is a reference to the table calling the function, e.g. this will return
“yes” for any element not otherwise in someTable:

someTable = { life = "is", good = "yes",

__index = function(self, i) return self.good end }
setmetatable(someTable, someTable)
print(someTable.bar)

This returns “yes”.

All of this in mind, we can use metatables to have classes:

simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass.init(self, x, y)

self.x = x
self.y = y
end
function simpleClass.add(self, x, y)
self.x = self.x + x
self.y = self.y + vy
end

function simpleClass.values(self)
return self.x, self.y
end

Now that we have created a simple class, we can make instances of that class via metatables.
Give the above class, let’s make an instance of it:

Sam Discusses Lunacy Page 8

objectInstance = {}
setmetatable(objectInstance, simpleClass)
objectInstance.init(objectInstance, 1, 2)
objectInstance.add(objectInstance, 3, 3)
print(objectInstance.values(objectInstance))

This will return & then 5.

This works but the grammar is a bit clunky. Lua has some synatic sugar to make things look
a little nicer. This is equivalent to the above example class code:

simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)

self.x = X
self.y =y
end

function simpleClass:add(x, y)

self.x = self.x + x
self.y = self.y + vy
end

function simpleClass:values()

return self.x, self.y
end
objectInstance = {}
setmetatable(objectInstance, simpleClass)
objectInstance:init(1,2)
objectInstance:add(3,3)
print(objectInstance:values())

This also returns 4 then 5.
“self” is a magic word in Lua used with Lua’s colon syntax.

Let’s change the class so that, for addition, we have a method which returns a new object
which is the sum of two other objects:

simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)

self.x = X
self.y =y
end

function simpleClass:add(other)
newObject = {}
setmetatable(newObject, simpleClass)
newObject.x = self.x + other.x
newObject.y = self.y + other.y
return newObject

end

function simpleClass:values()
return self.x, self.y

end

Sam Discusses Lunacy

objectInstance = {}
setmetatable(objectInstance, simpleClass)
anotherObject = {}

setmetatable(anotherObject, simpleClass)
objectInstance:init(1,2)
anotherObject:init(3,3)

thirdObject = objectInstance:add(anotherObject)
print(thirdObject:values())

This again returns 4 then 5.

Page 9

This in mind, we can use metatables to define what “+” does with a given table:

simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)

self.x = X
self.y =y
end

function simpleClass:add(other)
newObject = {}
setmetatable(newObject, simpleClass)
newObject.x = self.x + other.x
newObject.y = self.y + other.y
return newObject
end
simpleClass.__add = simpleClass.add
function simpleClass:values()
return self.x, self.y
end
objectInstance = {}
setmetatable(objectInstance, simpleClass)
anotherObject = {}
setmetatable(anotherObject, simpleClass)
objectInstance:init(1,2)
anotherObject:init(3,3)
thirdObject = objectInstance + anotherObject
print(thirdObject:values())

Like the other examples, this returns 4 then 5.
As we can see, Lua has operator overloading.

We can make it a little easier to make new objects. In addition, the
function instead of a pointer to a function (see the next page):

__add metatable can be a

Sam Discusses Lunacy Page 10

simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)

out = {}
setmetatable(out, simpleClass)
out.x = X
out.y =y
return out
end

function simpleClass:__add(other)
newObject = {}
setmetatable(newObject, simpleClass)
newObject.x = self.x + other.x
newObject.y = self.y + other.y
return newObject
end
function simpleClass:values()
return self.x, self.y
end
objectInstance = simpleClass:init(1, 2)
anotherObject = simpleClass:init(3, 3)
thirdObject = objectInstance + anotherObject
print(thirdObject:values())

This also returns 4 then 5.

Note that while the init method gets a “self” argument, we ignore that so that we can
retain the colon syntax for object methods.

Sam Discusses Lunacy Page 11

NUMBERS

The version of Lua I use is Lunacy, which is a fork of Lua 5.1.
In Lunacy, all numbers are IEEE 64-bit floats. This means:

e Numbers between -9,007,199,254,740,992 and 9,007,199,254,740,992 have a precision of
1 or higher; numbers in this range can be represented as integers.

e Numbers can be fractional; the closer the number is to zero, the more precision the
fraction has.

e The type of floating point number Lunacy uses is binary. This means that fractions which
are not a power of two are imprecise in Lua.

Let’s show an issue with these floats by looking at a loop in Lua.

To do a simple loop in Lua, we use this form:

for counter = start, end, increment do
print(counter)
end

The default value for increment is 1.

For example:

for counter = 1,10 do
print(counter)
end

Which gives us 1,2,3,4,5,6,7,8,9, and finally 10.
Likewise:

for counter = 1,11,2 do
print(counter)
end

Will give us 1,3,5,7,9,11
We can count backwards:

for counter = 10,1,-1 do
print(counter)
end

This gives us 10,9,8,7,6,5,4,3,2,1

Note that we must have the increment as a negative number to count backwards.

Sam Discusses Lunacy Page 12

Note that, since Lunacy uses 64-bit IEEE floats, counters really should only use integers. This
can give unexpected behavior:

for counter = .9,1,.05 do
print(counter)
end

With infinite precision numbers, or heck with decimal floating point numbers, we would get
0.90, 0.95, 1.00, but instead we get 0.90 and 0.95 without the 1.00 (when running as 32-bit
x86 code; the behavior is as expected on ARM64 and x86_64). This is caused because .05 is a
number ever so slightly higher when represented as a 64-bit IEEE binary floating point
number, causing the loop to act in unexpected ways.

The solution to avoid these kinds of issues is to always use integers for Lua loops, then divide
the number as needed, e.g.:

for counter = 90,100,5 do
print(counter / 100)
end

This will give the expected behavior.
How can we see a large integer in Lunacy?
The simple print() command will, with Lunacy, print numbers as high as

99,999,999,999,999. Higher numbers show the number of as "e + XXX" format, e.g.
100,000,000,000,000 is shown as 1e+014.

print(99999999999999)
print(100000000000000)

This shows 99999999999999 then 1e+014

In a 64-bit compile of Lunacy, this will correctly show 100000000000000:

print(string.format("%d",100000000000000))

However, in a 32-bit compile of Lunacy, the above code incorrectly shows
-2147483648. To work around this issue requires a function (see the next page):

Sam Discusses Lunacy Page 13

function numberToString(n)
0ut = nn
isNeg = false
if(n < 0) then

n = -n
isNeg = true
end
if(n == 0) then
return "0"
end
while n > 0 do
out = string.format("%d",n%10) .. out
n=n-(n%10)
n=n/10
end
if isNeg then
out = "-" .. out
end
return out

end
print(numberToString(100000000000000))

This will correctly show 100000000000000 in both the 32-bit and 64-bit versions of Lunacy.

Note that this function only works correctly for integers, and only for numbers small enough
to correctly divide by 10.

Sam Discusses Lunacy Page 14

BINARY NUMBERS

Numbers in Lunacy are binary numbers, which mean they are internally represented as
numbers with only Os and 1s in them. The number 0 is represented as 0, the number 1 is 1,
but the number 2 is 10, and the number 3 is 11, 4 is 100, and so on (to be pedantic, the
representation for numbers in Lunacy are actually IEEE 754 64-bit floating point numbers
which have a different representation in binary, but for the purposes of this lesson we can
treat the numbers as if they are binary integers). Each digit in a binary number is called a bit.

Hexadecimal

While it’s not possible in Lunacy to directly represent numbers in binary, we can represent
numbers as hexadecimal (sometimes called hex) numbers. This is a base 16 notation and we
tell Lunacy the number is hexadecimal by prefixing it with @x so 0x9 + 0x1 is 0xA or
equivalently 10. Let’s look at numbers in decimal (normal numbers as taught in elementary
school math), binary (base 2, as discussed above), and hexadecimal.

Decimal 0 1 2 3 4 5 6 7
Binary 0000 0001 0010 0011 0100 0101 0110 0111
Hexadecimal 0x0 ©Ox1 ©0x2 ©Ox3 Ox4 Ox5 Ox6 Ox7
Decimal 8 9 10 11 12 13 14 15
Binary 1000 1001 1010 1011 1100 1101 1110 1111
Hexadecimal 0x8 ©Ox9 ©OxA ©OxB OxC 0xD OxE OxF

Note forms like 0xa or 0xc are also acceptable; either upper case or lower case or even mixed
case (e.g. 0xfF) is acceptable.

Viewing numbers in hexadecimal can be done with the string.format call as follows:

function viewAsHex(n)

return string.format("%x",n)
end
print(viewAsHex(0xBeedBabe))

If we wish to view the hexadecimal number in upper case, use %X for the string format:

function viewAsHexUpper(n)

return string.format("%X",n)
end
print(viewAsHexUpper(0xBeedBabe))

32-bit numbers

There are certain binary operations Lunacy can perform on the numbers. Since the float point
format Lunacy uses to represent numbers allows numbers with up to 53 bits of precision, we
can not use 64-bit binary integers in Lunacy. 32-bit is the largest common representation of

Sam Discusses Lunacy Page 15

binary numbers smaller than the 53 bits Lunacy can actually store as a number, so the
functions which this book is about to show representing binary math are done with 32-bit
numbers. bit32.bor(0,foo) will return the value of foo as long as foo can fit in 32 bits.
That in mind:

print(string.format("%x",bit32.bor(4294967295,0)))

returns ffffffff, the largest number we can represent with 32 bits, but

print(string.format("%x",bit32.bor(4294967297,0)))

returns 1 (two more than the largest number one can fit in 32 bits; its hex form would be
0x100000001 but 32-bit Lunacy can only handle numbers inputted as hex between 0x00000000
and oxffffffff) because the bit32 operations work on return the lowest 32 bits of the input
number.

Binary operations

While Lua 5.1 does not have direct support for bitwise binary operations, Lunacy (as well as
other common ports of Lua 5.1 such as LuaJIT, Luau used in Roblox, and the version of Lua
5.1 used by the Wikipedia) includes a library of functions which allow binary operations. The
number of this library in Lunacy is bit32.

Common binary operations are and, called bit32.band in Lunacy, or called bit32.bor, and
exclusive or called bit32.bxor. These operations work on each bit independently. Let’s look at
the four possible one bit results for these operations, where the input is @ or 1

=~
[¢]
%)
c
-

Operation
bit32.band(0,0)
bit32.band(0,1)
bit32.band(1,0)
bit32.band(1,1)
bit32.bor(0,0)
bit32.bor(0,1)
bit32.bor(1,0)
bit32.bor(1,1)
bit32.bxor(0,0)
bit32.bxor(0,1)
bit32.bxor(1,0)
bit32.bxor(1,1)

SrRrFRPRORRROROSOSS

As mentioned before, these operations work on each bit independently. So, if the two inputs
have 3 bits, we perform the relevant operation on the lowest bit of the input numbers and
have the determine the lowest bit in the output number, then perform the relevant operation
on the second lowest bit of the input numbers to determine the second lowest bit in the
output number, and finally perform the operation on the third lowest bit of the input
numbers which affects the third lowest bit in the output number.

So, for example, to exclusive or the binary numbers 100 (four) and 110 (six), we do the

Sam Discusses Lunacy Page 16
following steps:

1. The highest (leftmost) bits in the input numbers are 1 and 1. The exclusive or of 1 and 1 is
0. So the leftmost bit of the output is 0.

2. The second (middle) bits in the input numbers are @ and 1. The exclusive or of @ and 1 is 1,
so the middle bit in the output is 1.

3. The lowest (rightmost) bits in the input numbers are 0 and 0. The exclusive or of @ and 0 is
0, so the lowest bit in the output is 0.

Let’s look at this another way:

100 input one
110 input two
010 result

Since binary 100 is 4 in decimal and binary 110 is 6 in decimal, the result is 2 (010).
And, indeed:
print(bit32.bxor(4,6))

Returns 2.

Other binary operations

Another binary operation is bit32.1shift(n,x), which shifts a number n to the left x number
of bits. For example, shifting the binary number 110 one bit to the left yields 1100; shifting
101 two bits to the left results in 10100. A 1shift of one bit is equivalent of multiplying a
number by 2; a two bit shift is like multiplying a number by 4; a three bit shift like
multiplying by 8; and so on.

The other binary operation in the example xoshiro code is bit32.rrotate(n,x), which rotates
a number n by x bits to the right. Since this is an operation on 32-bit numbers, this means

that if the low (rightmost) bit is 1, the high (32™ from left) bit becomes 1 when rotating one
bit to the right.

One example of bit32.rrotate:

Binary form of n 00000010 00000111 10100101 10000001 In hex: 0x0207a581
bit32.rrotate(n,2) 01000000 10000001 11101001 01100000 In hex: 0x4081e960

Here, the two low bits of the input become the two high bits in the output, and the rest of the
bits move to the right by two spots.

Sam Discusses Lunacy Page 17

A real world example

One real-world algorithm which generates pseudo-random numbers (a pseudo-random number
is a number which looks random, but is actually generated in a non-random way) using 32-
bit number bitwise math is xoshiro128**. Here is an implementation of the algorithm in Lua:

xoshiro128 = {}
xoshiro128._ _index = xoshiro128
function xoshiro128:init()

out = {}

setmetatable(out, xoshiro128)
out.s1l =1

out.s2 = 2

out.s3 = 3

out.s0 = 4

return out

end

function xoshiro128:next()
local result = self.sl = 5

result = result % 4294967296 -- Keep number 32-bit
result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
result = result * 9
result = result % 4294967296
local t = bit32.1lshift(self.s1, 9)
self.s2 = bit32.bxor(self.s2,self.s0)
self.s3 = bit32.bxor(self.s3,self.s1)
self.s1 = bit32.bxor(self.s1,self.s2)
self.s® = bit32.bxor(self.s0,self.s3)
self.s2 = bit32.bxor(self.s2,t)
self.s3 = bit32.rrotate(self.s3,21)
return result
end

-- This seeding is not part of the xoshiro128x spec
function xoshiro128:seed(s)
S =S % 4294967296

self.s® = bit32.bxor(s,0x55555555)
self.sl = (s = 37 + s * 3 + 1009) % 4294967296
self.s2 = (s * 223 + s * 7 + 1229) % 4294967296
self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
return true
end

X = xoshiro128:init()

x:seed(12345)

for a=1,8 do
print(string.format("%08x",x:next()))

end

Note that while stock Lua 5.1 uses a low-quality pseudo random number generator for
math.random() and the above code generates higher quality numbers, Lunacy’s
math.random() generates high quality random numbers using RadioGatin[32].

Sam Discusses Lunacy Page 18

COMMENTS

Lunacy has support for comments. Comments are blocks of code ignored by the Lunacy
parser, Unlike traditional UNIX scripts, Lua uses two dashes to indicate the beginning of the
comment.

Here is an example comment:

-- Here is a comment. It ends at the end of the line
foo = 1
-- Another comment

A comment which starts with two dashes ends at the end of a line.

Multi-line comments

Lua also has support for multi-line comments. A multi line comment starts with two dashes,
immediately followed by two left square brackets. A multi-line comment ends with two right
square brackets.

Here is an example multi-line comments:

foo = 1

--[[Here is a multi-line comment. It ends with two right square
brackets, like this: 1]

bar = 2

It’s also possible to use square bracket comment notation to put a comment in the middle of
a line:

foo --[[Here is a mid-line comment]] = 1

In case we want]] in a comment, we can use this syntax:

foo = 1

--[=[Here is another multi-line comment. Since this comment has an equal
sign between the brackets,]] no longer ends a comment. Instead,
the comment ends with an equals sign between the brackets:]=]

bar = 2

If both 1] and]=] are desired in a comment, we can use --[==[or --[===[or --[====
to begin a comment; the comment is ended by the corresponding number of equals signs

between the brackets closing the comment (e.g. 1==1 or]===] or]====]):
foo = 1
--[===[Comment with three equals between the brackets
] ===]
bar = 2

Sam Discusses Lunacy Page 19

DESKTOP CALCULATOR

Lunacy can be used as a desktop calculator. To do so, Lunacy can be started from the
command line in a terminal window. For example, anything in bold is typed by the user:

$ lunacy

Lunacy 2022-12-06 Copyright 1994-2012 Lua.org PUC-Rio; 2020-2022 Sam Trenholme
>1+1

2

> (1 +2) 3

9

+ is addition; - is subtraction; = is multiplication; / is division.

Lines which begin with a number of the (character are calculated. Should an expression who
which starts with another character is desired, the line needs to start with the = character.

> =math.pi
3.1415926535898

It’s possible to assign and use variables in the Lunacy command line:

n o
[T ||

(34 * 3) + 2
% 2

N V VvV

0

(o]

It’s also possible to define functions (or do pretty much anything Lunacy can do when run as
a script) when being run as a desktop calculator:

> function addOne(x)
>> print(x + 1)

>> end
> =addOne(3)
4

A desktop calculator will usually have arrow history support; in other words, if one hits the
up arrow character while using Lunacy in desktop calculator mode, the previously entered
command will appear again and can be edited with the left and right arrow keys. The 32-bit
Windows Lunacy has arrow support when run in Cygwin or PowerShell; the source code to
Lunacy has support for both readline and editline which gives Lunacy this support.

Lunacy does not store the state of its virtual machine; every single time Lunacy is started as a
fresh slate; functions and variables stored in previous invocations of Lunacy are lost.

Sam Discusses Lunacy Page 20

LoopPs (WHILE AND REPEAT)

In this chapter we will look at while loops, repeat loops, the break keyword, working around
Lunacy’s lack of a “continue” keyword, and show a basic for loop.

The While loop

In a while loop, we go through a loop while condition is true. A while loop starts with the do
keyword and ends with the end keyword. The general form is:

while condition do

actions
end

When Lunacy hits the end keyword, we see if condition is true; if so, Lunacy goes back to the
do keyword which begins the while loop.

Let’s this look at this code:

a=1

while a < 10 do
print(a)
a=a+1

end

The outputis 1, 2, 3, 4,5, 6,7, 8, and 9.
While loops can nest, which means we can have one while loop in another while loop:

a=1
while a < 4 do
b=1
while b < 3 do
print(a * b)
b=>b+1
end
a=a+1
end

Outputis 1, 2, 2, 4, 3, 6.
Note that it’s possible to have a while loop which never runs, e.g.:

a = 10
while a < 4 do
print("This will never run")
end
print("We are here")

This will only output We are here.

Sam Discusses Lunacy Page 21

The repeat loop

A repeat loop is similar to a while loop, but it will always goes through the loop once. For
example:

a = nil
repeat
if a == nil then
a=1
end
print(a)
a=a+1
until a > 9
print("Hello")

This outputs 1,2,3,4,5,6,7,8,9, then the word Hello.

Note that a repeat loop, unlike other loops, does not terminate with the end keyword but
instead with an until statement.

The break keyword

It’s possible to break a for, while, or repeat loop with the break keyword. For example:

a=1
while true do
if a >= 10 then
break
end
print(a)
a=a+1
end

This will output 1,2,3,4,5,6,7,8, and 9.
With a repeat loop:

a=1
repeat
if a >= 10 then
break
end
print(a)
a=a+1
until false

This will also output 1,2,3,4,5,6,7,8, and 9.

Sam Discusses Lunacy Page 22

No continue keyword

Some other languages, such as C, have a “continue” keyword. This keyword would cause the
loop to go back to the beginning of the loop, e.g. the while keyword if we’re in a while loop.

Lunacy does not have a continue keyword, but we can simulate it by having a loop inside of
a loop:

doBreak = false
a=1
repeat
while a < 10 do
doBreak = true

a=a+1

if a % 2 == 0 then
doBreak = false -- Make break act like continue
break -- Acts like continue

end

if a == 9 then
break -- Acts like break because doBreak is true

end

print(a)

end

until doBreak
This will output 3,5, and 7.

This trick works for while and repeat loops, but not with for loops (a version with the
repeat/until inside the for loop would work; this is left as an exercise for the reader).

The for loop

Lunacy actually has two forms of a for loop. One is a simple for loop where we go through
numbers; the other, which we will look at elsewhere, uses a function along with for. Here is
a simple numerical for loop:

for a=1,10,2 do
print(a)
end

This will output 1,3,5,7, and 9.

The “1” above is the value a has when we run the loop for the first time; 10 is the maximum
value a can have and have the loop still run. 2 above is the amount we increment a by (or
decrement, should this third number be negative) after each iteration of the loop.

Note that it’s best in a for loop of this form to use only integers; see the chapter on numbers
for discussion of why.

Sam Discusses Lunacy Page 23

FOR LOOPS WITH FUNCTIONS

It’s possible to use a function with a for loop. E.g:

a=1{z=1,y =2}

for k,v in pairs(a) do
print(k,v)

end

This will output in varying order (z,1) and (y,2).
We can make our own function which can be used as the iterator in a for loop:

function range(low, high)
local index = low
return function()
local rvalue = index
index = index + 1
if(rvalue > high) then
return nil
end
return rvalue
end
end

Here, range is a function which returns a function. What does the function generated by
range do? Let’s look:

twoToNine = range(2,9)
for a=1,11 do

print(twoToNine())
end

We get this output:

ooNOTUPWN

nil
nil
nil

Here is what is happening: The function twoToNine is able to remember the value of the
variable index between its invocations. index is a variable whose value gets stored in a
namespace local to the twoToNine function; this ability is called function closure.

Sam Discusses Lunacy Page 24

That in mind, we can use this range function in a for loop:
for a in range(2,9) do

print(a)
end

Given range as defined above, the above function will return this:

ooNOTUPWN

Under the hood, Lunacy calls the range function once. The range function returns an
anonymous function which we will call instanceOfRange. This instanceOfRange function is
then called at the start of the for loop. If instanceOfRange returns nil then the loop
terminates; otherwise we go through the loop with the variable a set to be the output value
of the instanceOfRange function. We do this over and over until instanceOfRange returns nil.

Sorted table keys

Let’s make a for iterator function which will return a function that returns the key for each
element in a table in sorted order:

function sortedTableKeys(inputTable)
local keylList = {}
local index =1
for k,_ in pairs(inputTable) do
table.insert(keyList,k)
end
table.sort(keyList)
return function()
rvalue = keyList[index]
index = index + 1
return rvalue
end
end

Here, table.insert is used to add a key in inputTable to keyList; it is run over and over
again to make keylList a list of all of the keys in inputTable. Once we have this list as an
array, table.sort sorts the list for us.

Next, the sortedTableKeys function creates a function which will simply return, when called
over and over again, the keys to inputTable in sorted order. That in mind, let’s make a table
and compare how the sortedTableKeys function runs versus how pairs runs (on next page):

Sam Discusses Lunacy Page 25
someTable = {a=12,b=14,c=19,d=23,e=17,f=11}

print("Unsorted:")
for a in pairs(someTable) do

print(a) -- Letters in random order
end
print(n ||)

print("Sorted:")

for a in sortedTableKeys(someTable) do
print(a) -- Letters correctly sorted

end

This will first output the keys to someTable in random order (as an aside, the order changes
each time Lunacy is started), then output the keys to someTable in sorted order, namely a, b,
c,d, e, and f.

We can even have a function which determines how the keys are sorted:

function sortedTableKeysSF(inputTable, sortFunction)
local keylList = {}
local index =1
for k,_ in pairs(inputTable) do
table.insert(keyList,k)
end
table.sort(keyList, sortFunction)
return function()
rvalue = keyList[index]
index = index + 1
return rvalue
end
end

function revSort(a, b)
return a > b
end

someTable = {a=12,b=14,c=19,d=23,e=17,f=11}

for a in sortedTableKeysSF(someTable, revSort) do
print(a) -- Letters sorted in reverse
end

Here, the above code returns f, e, d, ¢, b, and a: The letters reverse sorted. The default
(forwards, i.e a, b, c, d, e, and f) sorting would be done as follows:

function normalSort(a, b)
return a < b
end

for a in sortedTableKeysSF(someTable, normalSort) do
print(a)
end

Sam Discusses Lunacy Page 26

LIST ITERATION

Lua has simple numerical iteration via for foo=1,10 do and Lua has function iteration via
for foo in something(bar) do but Lua does not have built in iterators for a list the way,
say, Perl or Python do.

However, we can work around this by making functions which let Lua go through a list.

First, let’s have a function that, when given a table, returns its keys as a list:

function tableKeys(inputTable)
local out = {}
for k,_ in pairs(inputTable) do
table.insert(out,k)
end
return out
end

Now, let’s have a function that will allow us to use for to iterate through a list:

function iterateList(inputList)
local index = 1
return function()
local rvalue = inputList[index]
index = index + 1
return rvalue
end
end

And another function which sorts a list and returns the sorted list

function sorted(inputList)
table.sort(inputList)
return inputList

end

We can also have a function to reverse a list:

function reverse(inputList)
local out = {}
for a=#inputlList,1,-1 do
table.insert(out,inputList[a])
end
return out
end

With these four functions, we can iterate through a table with the keys reversed sorted:

someTable = {a=12,b=14,c=19,d=23,e=17,f=11}

for k in iteratelList(reverse(sorted(tableKeys(someTable)))) do
print(k, someTable[k])

end

Sam Discusses Lunacy Page 27

MULTIPLE INHERITANCE

In the chapter on metatables we looked at simple inheritance. We can also have multiple
inheritance:

¢ A class can have child classes
e Child classes can have multiple parents

Children

-

A given class can have a derived (a.k.a. child) class. Let’s look at the xoshiro128** example
we used in the chapter on binary numbers, but now with a child class. First, the parent class:

xoshiro128 = {}
xoshiro128._ _index = xoshiro128

function xoshiro128:init()

out = {}
setmetatable(out, self)
out.s1l =1

out.s2 = 2

out.s3 = 3

out.s0 = 4

return out

end

function xoshiro128:next()
local result = self.sl = 5

result = result % 4294967296 -- Keep number 32-bit
result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
result = result » 9
result = result % 4294967296
local t = bit32.1lshift(self.s1, 9)
self.s2 = bit32.bxor(self.s2,self.s0)
self.s3 = bit32.bxor(self.s3,self.s1)
self.s1 = bit32.bxor(self.s1,self.s2)
self.s® = bit32.bxor(self.s0,self.s3)
self.s2 = bit32.bxor(self.s2,t)
self.s3 = bit32.rrotate(self.s3,21)
return result
end

We can run this:

X = xoshiro128:init()
print(string.format("%x",x:next()))

Now that we have this class, we can make a derived class which adds the seeding method.
We do this because the method to seed a xoshiro128** state is not part of its specification.
On the next page is how that code will look:

Sam Discusses Lunacy Page 28

-- Let’s make a class which is the child class

-- This seeding is not part of the xoshiro128x spec
xoSeed = {}

xoSeed.__index = xoSeed
setmetatable(xoSeed,xoshiro128)

function xoSeed:seed(s)
S =S % 4294967296

self.s® = bit32.bxor(s,0x55555555)
self.s1l = (s = 37 + s * 3 + 1009) % 4294967296
self.s2 = (s * 223 + s * 7 + 1229) % 4294967296
self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
return true
end

Now that we have a child class, we can run it:

X = xoSeed:init()

x:seed(12345)

for a=1,8 do
print(string.format("%08x",x:next()))

end

Let’s look at the init() method which is used by both the parent and child class again:

function xoshiro128:init()

out = {}
setmetatable(out, self)
out.s1l =1

out.s2 = 2

out.s3 = 3

out.s0 = 4

return out

end

Here, the setmetatable function call has it so the class the object is derived from, self in the
code, is whatever class we are calling the function in. If we’re calling this method from the
xoshiro128 class, then self will be xoshiro128. If we’re calling this method from the xoSeed

class, then self is xoSeed.
Multiple parents

Since the __index member of a metatable can be either a table or a function, we can have

multiple parents for a class in Lua. Let’s see how that would look. Note that the xoshiro128

class is the same as it was before:

Sam Discusses Lunacy Page 29

xoshiro128 = {}
xoshiro128.__index = xoshiro128

function xoshiro128:init()

out = {}
setmetatable(out, self)
out.s1l =1

out.s2 = 2

out.s3 = 3

out.s0 = 4

return out

end

function xoshiro128:next()
local result = self.s1 * 5

result = result % 4294967296 -- Keep number 32-bit
result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
result = result = 9
result = result % 4294967296
local t = bit32.1lshift(self.s1, 9)
self.s2 = bit32.bxor(self.s2,self.s0)
self.s3 = bit32.bxor(self.s3,self.sl1)
self.s1l = bit32.bxor(self.s1,self.s2)
self.s® = bit32.bxor(self.s0,self.s3)
self.s2 = bit32.bxor(self.s2,t)
self.s3 = bit32.rrotate(self.s3,21)
return result
end

seeder = {}

seeder.__index = seeder

function seeder:seed(s)
S =S % 4294967296

self.s0® = bit32.bxor(s,0x55555555)
self.s1 = (s * 37 + s * 3 + 1009) % 4294967296
self.s2 = (s * 223 + s = 7 + 1229) % 4294967296
self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
return true
end
mix={}

mix.__index = function(self,element)
if xoshirol128[element] then
return xoshirol128[element]
end
if seeder[element] then
return seeder[element]
end
return nil
end
setmetatable(mix, mix)

X = mix:init()
x:seed(12345)
for a=1,8 do print(string.format("%08x",x:next())) end

Sam Discusses Lunacy Page 30

STRINGS

Lunacy has support for strings. For example:

a = "Hello, world!"
print(a)

This will output “Hello, world!”.
Single quotes

Strings can be quoted with either single quotes or double quotes; here’s single quotes:

a = 'Hello, world!’
print(a)

The only difference between single and double quotes is that it changes whether a single
quote or a double quote needs to be escaped; unlike other languages, Lunacy does not by
default expand variables in strings.

Strings are binary

A string is a binary stream; unlike C’s default string type, the NUL (0 value) character can be
part of a string. Lunacy does not have UTF-8 or any other locale support; high bit strings are
stored as is and strings do not have locale information (i.e. what character encoding a given
string uses or even what type of line feed is used) attached to them.

Escaping characters
It’s possible to escape characters with strings:

* \" always returns a double quote without terminating a string. This escape sequence is not
needed if the string is single quoted; e.g. '" is a double quote' is equivalent to the string
"\" is a double quote" or '\" is a double quote'. In all cases, the resulting string is
" is a double quote

* \' likewise always returns a single quote.

* \\ returns a backslash

* \ followed by a newline allows a multi-line string; the \ is not part of the resulting string.

* \0, \00, or \000 represents a NUL character

e Likewise \nnn, where nnn is a one digit, two digit, or three digit decimal number between
0 and 255 represents a character with the corresponding ASCII (or high bit) numerical
value. E.g. \33 or \033 is an exclamation point (“bang”) character and is equivalent to !

* \r, \n, \a, \b, \f, \t, and \v generate the corresponding character (In order shown here:
carriage return, newline, bell, backspace, form feed, and vertical tab).

Sam Discusses Lunacy Page 31
String concatenation

It’s possible to concatenate strings using the .. operator. For example:

a = "Hello, "
b=a.. "world!"
print(b)

returns Hello, world!

String manipulation functions

Let’s look at some of Lunacy’s string manipulation methods. String methods can be called
either as string.functionName (the first argument is the string to run the method against) or
as string: functionName (where the string name is already given); e.g. given that a is a string,
string.sub(a,1,3) is equivalent to a:sub(1,3). Note that strings in Lunacy are immutable
and the functions which generate strings return newly created strings.

string.sub

string.sub returns a substring. Its arguments are string.sub(string, start, end), where start is
the first character of the resulting string we put in the resulting substring (since Lua tends to
be 1-indexed, 1 is the first character in the source string, 2 is the second character, and so
on) and end is the final character. If start or end are negative, we count characters from the
end of the string; e.g. -1 is the final character in the string, -2 is the second final character,
and so on. If end is not specified, the resulting substring ends with the source string ends.

Examples:

a = "1234567890"

print(a:sub(2,5)) -- Output is 2345
print(string.sub(a,3,8)) -- Output is 345678
print(a:sub(8)) -- Output is 890
print(a:sub(7,-2)) -- Output is 789
print(string.sub(a,-5,8)) -- Output is 678

string.len

string.len returns how long a string is. A string can be 0 or more bytes long. Examples:

a = "12345"
print(a:len()) -- Returns 5
a = nn

print(a:len()) -- Returns 0

Sam Discusses Lunacy Page 32
string.find

string.find looks for a given substring in a string. Its form is string. find(string, pattern,
start, plain). start and plain are optional. pattern is the substring we are looking for; by
default pattern is a Lunacy regular expression pattern (a regular expression allows various
different strings with certain characteristics to match; regular expressions will be discussed
elsewhere). start is the first character we look at in the string for the matching pattern; if not
specified, start has a value of 1 which is the start of a string. plain, if set to true, looks for the
literal string in pattern instead of performing regular expression matching.

If the pattern is found, string.find returns two numbers: Where the matching string starts
(as a numeric string index; e.g. 1 is the first character), followed by where the matching
string ends. If the pattern is not found, string.find returns nil.

For example, string.find(a, "345") will look for an occurrence of the substring 345 in the
string a. Some other examples:

a = "1234567890"

print(a:find("567")) -- Returns 5,7
print(a:find("111")) -- Returns nil

a = "LovelLovelLove"

print(a:find("Love")) -- Returns 1,4
print(a:find("Love",3)) -- Returns 5,8
print(a:find("Love",7,true)) -- Returns 9,12
print(a:find("Love",11)) -- Returns nil

string.gsub

string.gsub replaces occurrences of a pattern with another string. It is called as
string.gsub(string, pattern, newString, count) or string:gsub(pattern, newString, count)

string is the string we are creating an altered copy of. pattern is the regular expression pattern
we are looking for (again, regular expressions will be discussed elsewhere). newString is the
string we replace occurrences of pattern with. count, which is an optional argument, specifies
the maximum number of times we replace pattern; if count is not specified, we replace all
occurrences of pattern in string.

string.gsub returns the altered string as well as the number of times it found pattern.

Some examples:

a = "1234567890"

print(a:gsub("456","axy")) -- Returns "123axy7890",1
print(a:gsub("111","axy")) -- Returns "1234567890",0

a = "LifeLifeLife"

print(a:gsub("Life","Love")) -- Returns "LovelLovelLove",3
print(a:gsub("Life","Love",1)) -- Returns "LovelLifeLife",1
print(a:gsub("Life","Love",2)) -- Returns "LovelLovelLife",2

